The Physics of the Reaction Plane Detector

Abby Bickley
University of Colorado
February 6, 2007

Questions

- 1. What does the reaction plane detector actually measure?
- 2. How is this incorporated into physics analyses?
- 3. What do these measurements allow us to learn about the collision medium?

Questions

- 1. What does the reaction plane detector actually measure?
- 2. How is this incorporated into physics analyses?
- 3. What do these measurements allow us to learn about the collision medium?

The Reaction Plane Detector

- Review from last week:
 - Two sets of plastic
 scintillators positioned on
 either side of the collision
 vertex (38 < |z| < 40cm)
 - 12 segments in φ
 - -2 segments in η
 - $1.0 < |\eta| < 1.5$
 - $1.5 < |\eta| < 2.8$

- As charged particles pass through the plastic scintillator they deposit energy and photons are produced
- These photons are collected and amplified by PMT's
- Resulting signal is proportional to the original energy deposition in each individual segment

- As charged particles pass through the plastic scintillator they deposit energy and photons are produced
- These photons are collected and amplified by PMT's
- Resulting signal is proportional to the original energy deposition in each individual segment

- As charged particles pass through the plastic scintillator they deposit energy and photons are produced
- These photons are collected and amplified by PMT's
- Resulting signal is proportional to the original energy deposition in each individual segment

Reaction Plane Definition

- Incomplete overlap between nuclei results in an "almond" shaped collision region
- Characterize collision region by reaction plane (defined by beam direction and vector between centers of colliding nuclei)
- Pressure gradient to expand is greatest along short axis (in-plane)
- Results in greater particle emission in-plane

- In non-central collisions the difference between the inplane and out-of-plane pressure gradients results in preferential in-plane particle emission
- This shows up in the reaction plane detector as an increased energy deposition in those segments aligned with the reaction plane
- Allows for an event-by-event determination of Ψ_R

1. Back to back jets:

- Create a spray of particles at 180°
- Could mask or bias preferential angle of emission by pressure gradients
- Preferentially generated in mid-rapidity region \therefore would only influence Ψ_R determination in outer scintillator segments
- 2. Collision centrality
- 3. Reaction plane resolution

1. Back to back jets:

2. Collision centrality:

- The more central the collision the more spherical the overlap region and weaker the difference in the pressure gradients
- Hence ability to determine Ψ_R is highly dependent on the collision centrality

3. Reaction plane resolution

- 1. Back to back jets:
- 2. Collision centrality:
- 3. Reaction plane resolution:
 - Correction factor that is applied to account for the fact that the finite number of particles used to determine the reaction plane result in a limited resolution in the angle of the measured reaction plane

Method 1: Direct Calculation

- Method 2: Sub-event method
 - Use two independent sets of particles (a,b) from the same event to calculate the reaction plane
 - Compare reaction plane from each sub-event to determine resolution

$$\sigma_{RP} = \sqrt{\left\langle \cos\left[n\left(\psi_n^a - \psi_n^b\right)\right]\right\rangle}$$

- Requires assumptions:
 - Both sub-events contain the same number of particles
 - Degree of flow is the same in each sub-event
 - Any particle correlations other than flow are negligible

- Method 2: Sub-event method application
 - Each set of BBC's compose a single sub-event
 - BBC's are symmetric in acceptance so it is reasonable to assume both sub-events contain the same number of particles and degree of flow
 - BBC's are far forward in rapidity thus any particle correlations other than flow are negligible $(3.1 < |\eta| < 3.9)$

- Method 2: Sub-event method application
 - Same technique can be applied using the reaction plane detector
 - Rapidity coverage is greater $1.0 < |\eta| < 2.8$ compared to $3.1 < |\eta| < 3.9$ of BBC's
 - Incident multiplicity is greater
 - Pb converter enhances signal by converting neutrals to charged particles that can be detected in the scintillators

- Ability to determine reaction plane is dependent upon BBC incident multiplicity
- Beams of light ions and low energies result in fewer particles
- Future measurements of v₂ in these systems will require an improved reaction plane resolution

- Ability to determine reaction plane is dependent upon BBC incident multiplicity
- Beams of light ions and low energies result in fewer particles
- Future measurements of v₂ in these systems will require an improved reaction plane resolution

Questions

- 1. What does the reaction plane detector actually measure?
- 2. How is this incorporated into physics analyses?
- 3. What do these measurements allow us to learn about the collision medium?

Azimuthal Anisotropy

- 1. Collision Feature \Rightarrow degree of overlap in colliding nuclei
- 2. Scattering converts spatial anisotropy to momentum anisotropy
- 3. Measurable Quantity ⇒ momentum anisotropy of produced particles

20

Measuring Elliptic Flow

• Elliptic Flow:

- Second harmonic coefficient of the Fourier expansion of the azimuthal distribution of particles
- $v_2 = \langle \cos(2\varphi_n) \rangle$.
- For each collision event determine reaction plane
- Measure angular distribution of emitted particles wrt reaction plane, φ_n
- Calculate v₂ per event
- Examine dependence on centrality, momentum, particle id, rapidity, collision energy, collision species....

$$v_2^{meas} = \langle \cos(2\varphi) \rangle$$

 $\varphi = \text{angle of each particle}$
wrt reaction plane

$$v_{2}^{true} = \frac{\langle \cos[2(\varphi)] \rangle}{\sigma_{RP}}$$

$$v_{2}^{true} = \frac{\langle \cos[2(\varphi)] \rangle}{\sqrt{\langle \cos[2(\psi_{2}^{a} - \psi_{2}^{b})] \rangle}}$$

- Resolution must be applied as a correction factor to any experimental measurement of flow
- Always results in $v_2^{true} > v_2^{meas}$
- The precision to which the reaction plane can be determined directly limits any measurement of flow and translates into the statistical error

Error Analysis

$$\delta(v_2^{\text{expt}}) \approx \frac{1}{\sqrt{N_{signal}}}$$

$$\delta(v_2^{\text{true}}) = \frac{\delta(v_2^{\text{expt}})}{\sigma_{RP}} \approx \frac{1}{\sigma_{RP} \sqrt{N_{signal}}}$$

- The two key components of the statistical error in any elliptic flow measurements are the signal strength and the reaction plane resolution
- Statistical power of measured v_2 is reduced by $(\sigma_{RP})^2$

Improvement provided by reaction plane detector compared to

$$\left(\frac{\sigma_{RP}^{RXN}}{\sigma_{RP}^{BBC}}\right)^2 = \left(\frac{0.40}{0.70}\right)^2 \approx 3$$

Questions

- 1. What does the reaction plane detector actually measure?
- 2. How is this incorporated into physics analyses?
- 3. What do these measurements allow us to learn about the collision medium?

Collision Evolution

- Elliptic flow studies probe the early stages of the collision when the initial collision geometry still dominates
- System can be described by thermodynamic quantities only if thermal equilibrium is achieved
- This occurs during a heavy ion collision when the energy deposited during the collision generates large numbers of particles that interact & rescatter among themselves

Time Scales

- Hydrodynamical models are used to calculate the time evolution of the energy density in-plane
- If thermal equilibrium is achieved:
 - late then asymmetry will be small
 - early then asymmetry will be large
- Experimental observation of v₂ implies local thermal equilibrium achieved while spatial anisotropy exists (ie short time scale)

Early Elliptic Flow Results Centrality:

Collision Energy:

As collision energy decreases energy density pressure gradient also decreases resulting in decreased flow

As % centrality decreases overlap region becomes less asymmetric : less difference in pressure gradient

Early Elliptic Flow Results

White Paper Conclusions:

- Identified hadron v₂ is well reproduced by hydro calculations at low p_T
- Magnitude of v_2 requires thermal equilibration time of $\sim 0.6\text{-}1.0$ fm/c

Hydrodynamics Lessons

✓ Thermal Equilibration:

Large elliptic flow signal implies fast equilibration time of collision system, $t \sim 1$ fm/c.

x Weakly interacting QGP:

Classic concept of a quark gluon plasma as an ideal relativistic gas with color deconfinement.

✓ Strongly interacting nonhadronic medium:

Fluid-like properties of collision medium indicate significant interactions occur among the particles.

Press Release: "Perfect Liquid"

Contact: Karen McNulty Walsh, (631) 344-8350 or Mona S. Rowe, (631) 344-5056

RHIC Scientists Serve Up "Perfect" Liquid

New state of matter more remarkable than predicted -- raising many new questions

April 18, 2005

TAMPA, FL -- The four detector groups conducting research at the <u>Relativistic Heavy Ion Collider</u> (RHIC) -- a giant atom "smasher" located at the U.S. Department of Energy's Brookhaven National Laboratory -- say they've created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. In <u>peer-reviewed papers</u> summarizing the first three years of RHIC findings, the scientists say that instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a *liquid*.

What is a "Perfect Liquid"?

- Liquid = a substance that exhibits a readiness to flow with little or no tendency to disperse, and relatively high incompressibility.
- Perfect Liquid = liquid that exhibits no resistance to flow
- How does this apply to RHIC?
 - Strong elliptic flow observed that is well described by hydrodynamic models
 - Magnitude, particle type up to $p_T \sim 1 2 \text{ GeV/c}$
 - Fast thermalization ($\tau < 1 \text{fm/c}$)
 - Little or no viscosity

Quark Number Scaling

- Indicates quark-like degrees of freedom in flowing matter for hadrons made of light quarks
- Recombination consistent with observed n_q scaling of v₂

Remaining Questions

- Elliptic flow measurements have been successful at revealing the nature of the collision medium BUT many more measurements remain
 - Heavy quarks:
 - Do they couple to the medium?
 - Quarkonia:
 - Test of regeneration models
 - High $p_T \pi^0$'s:
 - Parton energy loss as a function of path length in the medium
 - Intermediate p_T direct photons:
 - Test predictions of jet-medium interaction as a function of path length in the medium
- Statistics, Statistics, Statistics......

Do heavy quarks flow?

Non-photonic Electrons:

Semi-leptonic charm & bottom decays Signal

Di-electron decays of ρ , ω , ϕ , J/ψ Kaon decay

Photonic Electrons:

Dalitz decays of π^0 , η , η' , ω , ϕ Photon conversions Direct photon (negligible) Back ground

Do heavy quarks flow?

Non-photonic Electrons:

Semi-leptonic charm & bottom decays Signal

Di-electron decays of ρ , ω , ϕ , J/ψ

Kaon decay

Photonic Electrons:

Dalitz decays of π^0 , η , η' , ω , ϕ

Photon conversions

Direct photon (negligible)

Back ground

Heavy flavor electron v₂:

Is the single electron v_2 representative of the v_2 of the parent heavy meson?

Do heavy quarks flow?

Non-photonic Electrons:

Semi-leptonic charm & Signal bottom decays

Di-electron decays of ρ , ω , ϕ , J/ψ

Kaon decay

Photonic Electrons:

Dalitz decays of π^0 , η , η' , ω , ϕ

Photon conversions

Direct photon (negligible)

Back ground

Heavy flavor electron v₂:

Is the single electron v₂ representative of the v_2 of the parent heavy meson?

Possible Scenarios

1. After production heavy quarks do not interact with the medium and eventually fragment in the vacuum

$$\mathbf{v}_2 = \mathbf{0}$$

2. Heavy quarks suffer in-medium energy loss before fragmenting, but do not flow

$$v_2 \neq 0$$

3. Heavy quarks flow in the medium and hadronize via coalescence or recombination

$$\mathbf{v}_2 \neq \mathbf{0}$$

4. Heavy quarks do not flow with the medium, but hadronize via recombination and pick up v_2 of light quark partner $v_2 \neq 0$

Do heavy quarks flow?

- Sizeable v₂ seen for non-photonic electrons
- Main source of non-photonic electrons (below 2GeV/c) is D-mesons
- Implies the heavy flavor v₂ is non-zero
- Scenarios 2-4 still possible candidates

Do heavy quarks flow?

- Armesto (scenario 2)
 - pQCD calculations with radiative energy loss and large transport coefficient
 - v₂ results from path length dependence of energy loss
- Heavy quark transport calculations -
 - Require short relaxation time of heavy quarks
 - Small diffusion coefficient

Do heavy quarks flow?

- Armesto (scenario 2)
 - pQCD calculations with radiative energy loss and large transport coefficient
 - v₂ results from path length dependence of energy loss
- Heavy quark transport calculations -
 - Require short relaxation time of heavy quarks
 - Small diffusion coefficient

Consistent with small values of η /s near quantum bound

 $\eta/s = 1/4\pi$

Measurement Limitations

- Scenarios 3&4 still possible:
 - Heavy quarks flow in the medium and hadronize via coalescence or recombination
 - Heavy quarks do not flow with the medium, but hadronize via recombination and pick up v_2 of light quark partner
- Discriminating power of measurement limited by large errors
- Poor statistics at high p_T
 - Region is particularly interesting because it allows access to bquark through the decay of the B-mesons
 - v₂ of b-quark expected to be small due to large mass
- Improved reaction plane resolution will reduce errors!

Quarkonia

- Quarkonia are of particular interest because....
 - Large mass $(J/\psi = 3096.99 \pm 0.04 \text{ MeV}, Y = 9460.37 \pm 0.21 \text{ MeV})$
 - Produced during initial stage partonic collisions
 - Medium interactions convey information about the collision environment
 - Measurements of elliptic flow can probe the degree of thermalization of the medium
- In heavy ion collisions only J/ψ is accessible in PHENIX

Competing effects are predicted to govern J/ψ production

J/ψ color screening

J/ψ recombination

Shadowing

Heavy quark energy loss

Normal nuclear absorption

Etc.....

Phenix Focus

J/ψ Models

- Suppression Models:
 - Assume heavy quarkonia are formed only during the initial hard collisions
 - Subsequent interactions only result in additional loss of yield
 - Suppression of J/ψ yield with increasing collision centrality
- Recombination Models: $c + \overline{c} \longleftrightarrow J/\psi + g$
 - In central RHIC heavy ion collisions ∼10-40 c-cbar pairs are formed
 - Regeneration of J/ψ possible from independently produced c and cbars
 - Leads to an enhancement of J/ψ yield (or less dramatic suppression)
 - Increased J/ ψ yield with increasing collision centrality
 - Narrowed J/ ψ rapidity and p_T distributions with increasing centrality

R_{AA} Results

- PHENIX mid-rapidity results show same degree of suppression as observed at the SPS
- Suppression models predict much larger degree of suppression at RHIC energies
- What is the cause:
 - Recombination?
 - Sequential melting?
- $J/\psi v_2$ can help to distinguish between models

Focus

Theoretical Approaches

- Continuous regeneration in collision volume:
 - Weak interaction limit:
 - Charm quarks retain original momentum & spatial distribution
 - No in-medium interaction results in no v₂
 - Strong correlation to medium:
 - Charm quarks thermalized and spatially statistically distributed
 - J/ψ yield still dominated by initial production
 - Small average v₂

Theoretical Approaches

- Continuous regeneration in collision volume:
 - Weak interaction limit:
 - Charm quarks retain original momentum & spatial distribution
 - No in-medium interaction results in no v₂
 - Strong correlation to medium:
 - Charm quarks thermalized and spatially statistically distributed
 - J/ψ yield still dominated by initial production
 - Small average v₂
- Regeneration at hadronization:
 - Charm quarks experience complete thermalization
 - No contribution from initially produced J/ψ
 - Large v₂

February 6, 2007

Phenix

Do quarkonia flow?

What have we been able to measure so far....

Based on CAD projections for machine performance

	Run Length (wks)	Mean Luminosity Delivered (nb ⁻¹)	PHENIX Luminosity (nb ⁻¹⁾	PHENIX Events (x10 ⁹)
5	14	2.56	1.15	7.3
	12	2.16	0.97	6.1
	10	1.71	0.77	4.9
	8	1.29	0.58	3.7
	6	0.92	0.41	2.6
	4	0.51	0.23	1.5
	2	0.17	0.08	0.5

Run4 equiv

- Calculations presented at H/L by Tony Frawley
- Assumes PHENIX efficiency factor of 0.45 =
 Up time(70%) * vertex cut loss(80%) * daq dead time (80%)

Run 7 Prospects Lets assume we get 14 weeks 200 GeV Au+Au physics:

- - Equivalent to x5 in events
 - Run 4 dimuon $J/\psi \sim 4500 \Rightarrow 22500$
 - Run 4 dielectron J/ $\psi \sim 1000 \Rightarrow 5000$
- What magnitude of statistical error could we expect on a J/ ψ v₂ measurement?

- Lets assume we get 14 weeks 200 GeV Au+Au physics:
 - Equivalent to x5 in events
 - Run 4 dimuon $J/\psi \sim 4500 \Rightarrow 22500$
 - Run 4 dielectron J/ $\psi \sim 1000 \Rightarrow 5000$
- What magnitude of statistical error could we expect on a $J/\psi v_2$ measurement?
 - The statistical error on the v_2 measurement ~ fractional error on the J/ψ signal
 - Fractional error = $(J/\psi \text{ stat error}) / (J/\psi \text{ yield})$
 - Depends only on the observed S/B ratio in the J/ψ extraction

- Lets assume we get 14 weeks 200 GeV Au+Au physics:
 - Equivalent to x5 in events
 - Run 4 dimuon $J/\psi \sim 4500 \Rightarrow 22500$
 - Run 4 dielectron J/ $\psi \sim 1000 \Rightarrow 5000$
- What magnitude of statistical error could we expect on a $J/\psi v_2$ measurement?
 - The statistical error on the v_2 measurement ~ fractional error on the J/ψ signal
 - Fractional error = $(J/\psi \text{ stat error}) / (J/\psi \text{ yield}) = 212/4075 (0-1 GeV dimuon bin})$
 - Depends only on the observed S/B ratio in the J/ψ extraction

PHENIX, Au+Au Run 7, 14 weeks 1.15 /nb

- Statistical error bars indicate expected discriminating power of measurement
- Curves demonstrate range in available model parameterizations
- **Point positions are arbitrary => key is errors**

Run Length Dependence

Calculations by Tony Frawley

Questions & Answers

- 1. What does the reaction plane detector actually measure?
 - Resulting signal is proportional to the original energy deposition in each individual segment
 - Increased energy deposition occurs in those segments aligned with the reaction plane
 - Allows event-by-event determination of reaction plane
- 2. How is this incorporated into physics analyses?
 - Flow variables measured wrt reaction plane
 - Resolution must be applied as a correction factor to any measurement of flow
- 3. What do these measurements tell us about the collision medium?
 - Thermal equilibration occurs on short timescales
 - Matter is a strongly interacting partonic medium
 - Future studies will shed light on:
 - Heavy flavor in medium behavior and production/regeneration mechanisms
 - Parton energy loss as a function of path length in the medium from high $p_T \pi^0$'s
 - Test predictions of jet-medium interaction as a function of path length in the medium with intermediate p_T direct photons

Dependence of v_2 error on v_2 of J/ψ and Background

February 0, 200